数字经济时代,数据已成为新的核心生产要素,其重要战略资源地位和核心科学决策作用已日渐凸显。数据潜能的激发,有赖于数据的采集、存储、计算、管理和应用,其中,作为数据采集后进行处理的第一道关口,数据存储无疑是数字经济最重要的“底盘”。

海量数据爆发,数据存储成关键

当前,数据呈现指数级增长,数据规模已经从之前的GB、TB、PB,上升到EB级、甚至ZB级。据Hyperion预测,到2025年,全球数据空间将增长到163ZB,这是2011年HPC产生数据16.1ZB的10倍。爆炸式增长的数据,哺育了数字技术发展和应用,但是同时也对计算和存储提出了更高的要求。

在高性能计算(HPDA)中,计算、存储、网络三大部件缺一不可。以前,产业创新的焦点都在追求更高的算力。而随着大数据、多样性算力等相关技术的快速发展,高性能计算的重心开始从以计算为核心,向以数据为中心的计算演进;传统HPC开始向高性能数据分析(HPDA)方向演进。据IDC统计,全球67%的高性能计算中心(HPC)已经在使用AI、大数据相关技术,HPC与AI、大数据加速融合,走向以数据密集型为典型特征的高性能数据分析HPDA时代。

HPDA时代下,各行业数据量迎来了井喷式增长。地震勘探从二维向三维的演进中,数据量增加了10-20倍;电影渲染从2K升级到8K的革命中,数据量增长16倍;卫星测绘领域,探测精准度由20米缩小到2米,数据量同比增长近70倍。

数据规模激增之外,业务模型复杂以及分析效率较低等挑战,也都在呼唤着更高效率的存储。

存储作为数据的承载者,逐步成为推动HPC产业发展的新动能。然而,传统的HPC存储在混合负载性能、成本、跨协议访问等多方面存在壁垒,无法匹配HPDA场景的需求。如何打破存储性能、成本、效率的限制,充分释放数据潜能,成为制约HPC产业升级换代的掣肘。

高性能数据分析存储,加速HPC产业发展

当前,作为数据应用和数据分析的支撑平台,以及科技强国的关键基础设施,数据存储已成为国之重器,在金融核心交易、新型油气勘探、基因测序、自动驾驶、气象预测、宇宙探索等领域发挥重要作用。数据的存储与处理能力已经成为提升政府管理水平、提高企业经营效率、增强企业发展韧性的关键,数据存储正成为加速数字化转型的坚实底座。

新的产业变化以及数据存储的重要地位,对高端存储提出了新的挑战,同时也在加速存储技术的革新——从HPC部分场景向HPC/HPDA全场景扩展,存储开始承担起加速产业向“数据密集型”转型的重任。根据国际权威分析师机构Hyperion Research 2020年针对HPC市场空间的数据显示,数据存储的增速第一,远高于整体市场平均增速。

面对海量数据,存储需要更加关注性能、存储本身的数据处理能力、AI应用结合以及大数据等。高性能数据分析HPDA存储应运而生,让数据应存尽存、高效共享。显然,高性能计算(HPC) 的发展,必须有与之相匹配的高性能数据分析(HPDA)存储。

高性能数据分析(HPDA)存储,能够匹配各HPDA场景的高端存储,可以让基因测序、气象海洋、超算中心、能源勘探、科研与工业创新、智能医疗、深度学习、人脸识别等数据密集型HPDA应用场景,在效率、品质、性价比等方面实现飞跃式提升。

值得注意的是,华为OceanStor Pacific系列下一代高性能数据分析(HPDA)存储,可以高效应对超高密设计、混合负载设计以及多协议互通上的关键挑战,推动HPC产业向数据密集型升级。目前已经成功应用于自动驾驶、基因测序、气象预测、卫星遥感等众多国内外高性能计算场景企业及机构。

存储作为高性能数据分析的重要引擎,正全面释放HPC的应用价值,驱动着HPC产业不断进步,跨越“计算密集型”到“数据密集型”的鸿沟,持续推动人类社会繁荣健康发展。

推荐内容